Bacterial Endophytes: Diversity, Functional Importance, and Potential for Manipulation
Even though beneficial plant–microbe relationships have been studied for over one century, the recognition of a complex microbiome inhabiting the plant is relatively recent and reveals new opportunities for manipulating plant growth and health. Endophytes, commonly defined as non-pathogenic microorganisms inhabiting the plant interior, constitute an important component of the plant microbiome. Specifically, bacterial endophytes gained research interest only in the past decades, due to their role in plant-growth promotion and their potential use in agriculture. New research is continuously published in this topic, with increasing sophistication provided by new technologies such as omics. For this reason, this chapter aimed to summarize current knowledge on bacterial endophytes focusing on three major aspects: (1) current knowledge on their bacterial endophytic diversity and regulation by plant and soil factors, (2) functional aspects of bacterial endophytes and available tools to study them, and (3) role of bacterial endophytes on plant fitness and potential manipulation tools in agroecosystems. To fit the scope of this book, which is the rhizosphere, the chapter focused on soil-borne facultative endophytes, even though we acknowledge the relevance of obligate vertically transmitted endophytes.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 149.79 Price includes VAT (France)
Softcover Book EUR 189.89 Price includes VAT (France)
Hardcover Book EUR 189.89 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Invisible Inhabitants of Plants and a Sustainable Planet: Diversity of Bacterial Endophytes and their Potential in Sustainable Agriculture
Article 05 March 2024
Omic Route to Utilize Endophytes and Their Functional Potentials in Plant Growth Advancement
Chapter © 2023
Biotechnological overview of agriculturally important endophytic fungi
Article 04 March 2021
References
- Adam E, Bernhart M, Müller H et al (2018) The Cucurbita pepo seed microbiome: genotype-specific composition and implications for breeding. Plant Soil 422:35–49. https://doi.org/10.1007/s11104-016-3113-9ArticleCASGoogle Scholar
- Afzal M, Yousaf S, Reichenauer TG et al (2011) Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. J Hazard Mater 186:1568–1575. https://doi.org/10.1016/j.jhazmat.2010.12.040ArticlePubMedCASGoogle Scholar
- Agler MT, Ruhe J, Kroll S et al (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14:1–31. https://doi.org/10.1371/journal.pbio.1002352ArticleCASGoogle Scholar
- Ahemad M (2015) Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3 Biotech 5:111–121. https://doi.org/10.1007/s13205-014-0206-0ArticlePubMedGoogle Scholar
- Ahkami AH, Allen White R, Handakumbura PP, Jansson C (2017) Rhizosphere engineering: enhancing sustainable plant ecosystem productivity. Rhizosphere 3:233–243. https://doi.org/10.1016/j.rhisph.2017.04.012ArticleGoogle Scholar
- Akinsanya MA, Goh JK, Lim SP, Ting ASY (2015) Metagenomics study of endophytic bacteria in Aloe vera using next-generation technology. Genomics Data 6:159–163. https://doi.org/10.1016/J.GDATA.2015.09.004ArticlePubMedPubMed CentralGoogle Scholar
- Alain K, Querellou J (2009) Cultivating the uncultured: limits, advances and future challenges. Extremophiles 13:583–594. https://doi.org/10.1007/s00792-009-0261-3ArticlePubMedGoogle Scholar
- Ali S, Duan J, Charles TC, Glick BR (2014) A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia spp. J Theor Biol 343:193–198. https://doi.org/10.1016/j.jtbi.2013.10.007ArticlePubMedCASGoogle Scholar
- Allwood JW, Ellis DI, Goodacre R (2007) Metabolomic technologies and their application to the study of plants and plant–host interactions. Physiol Plant 132:117–135. https://doi.org/10.1111/j.1399-3054.2007.01001.xArticleCASGoogle Scholar
- Altaf MM, Khan MSA, Abulreesh HH, Ahmad I (2017) Quorum sensing in plant growth-promoting rhizobacteria and its impact on plant-microbe interaction. In: Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 311–331 ChapterGoogle Scholar
- Andreote FD, Azevedo JL, Araújo WL (2009) Assessing the diversity of bacterial communities associated with plants. Braz J Microbiol 40:417–432. https://doi.org/10.1590/S1517-83822009000300001ArticlePubMedPubMed CentralCASGoogle Scholar
- Andreote FD, Rossetto PB, Souza LCA et al (2008) Endophytic population of Pantoea agglomerans in citrus plants and development of a cloning vector for endophytes. J Basic Microbiol 48:338–346. https://doi.org/10.1002/jobm.200700341ArticlePubMedCASGoogle Scholar
- Angers DA, Caron J (1998) Plant-induced changes in soil structure: processes and feedbacks. Biogeochemistry 42:55–72. https://doi.org/10.1023/A:1005944025343ArticleGoogle Scholar
- Anyango B, Wilson KJ, Beynon JL, Giller KE (1995) Diversity of rhizobia nodulating Phaseolus vulgaris L. in two Kenyan soils with contrasting pHs. Appl Environ Microbiol 61:4016–4021 ArticleCASPubMedPubMed CentralGoogle Scholar
- Araújo WL, Marcon J, Maccheroni W et al (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914. https://doi.org/10.1128/AEM.68.10.4906-4914.2002ArticlePubMedPubMed CentralCASGoogle Scholar
- Ardanov P, Sessitsch A, Häggman H et al (2012) Methylobacterium-induced endophyte community changes correspond with protection of plants against pathogen attack. PLoS One 7:e46802. https://doi.org/10.1371/journal.pone.0046802ArticlePubMedPubMed CentralCASGoogle Scholar
- Arnholdt-Schmitt B, Valadas V, Döring M (2016) Functional marker development is challenged by the ubiquity of endophytes - a practical perspective. Brief Funct Genomics 15:16–21. https://doi.org/10.1093/bfgp/elu049ArticlePubMedGoogle Scholar
- Arrese-Igor C, Minchin FR, Gordon AJ, Nath AK (1997) Possible causes of the physiological decline in soybean nitrogen fixation in the presence of nitrate. J Exp Bot 48:905–913. https://doi.org/10.1093/jxb/48.4.905ArticleGoogle Scholar
- Bacilio M, Moreno M, Lopez-Aguilar DR, Bashan Y (2017) Scaling from the growth chamber to the greenhouse to the field: demonstration of diminishing effects of mitigation of salinity in peppers inoculated with plant growth-promoting bacterium and humic acids. Appl Soil Ecol 119:327–338. https://doi.org/10.1016/j.apsoil.2017.07.002ArticleGoogle Scholar
- Bacon CW, White JF (2016) Functions, mechanisms and regulation of endophytic and epiphytic microbial communities of plants. Symbiosis 68:87–98. https://doi.org/10.1007/s13199-015-0350-2ArticleCASGoogle Scholar
- Badri DV, Chaparro JM, Zhang R et al (2013) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288:4502–4512. https://doi.org/10.1074/jbc.M112.433300ArticlePubMedPubMed CentralCASGoogle Scholar
- Badri DV, Vivanco JM (2008) Regulation and function of root exudates. Plant Cell Environ 32:666–681. https://doi.org/10.1111/j.1365-3040.2008.01926.xArticleGoogle Scholar
- Bai Y, Müller DB, Srinivas G et al (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369. https://doi.org/10.1038/nature16192ArticlePubMedCASGoogle Scholar
- Bailey K, Lazarovits G (2003) Suppressing soil-borne diseases with residue management and organic amendments. Soil Tillage Res 72:169–180. https://doi.org/10.1016/S0167-1987(03)00086-2ArticleGoogle Scholar
- Bakker MG, Manter DK, Sheflin AM et al (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360:1–13. https://doi.org/10.1007/s11104-012-1361-xArticleCASGoogle Scholar
- Bala A, Murphy P, Giller KE (2003) Distribution and diversity of rhizobia nodulating agroforestry legumes in soils from three continents in the tropics. Mol Ecol 12:917–929. https://doi.org/10.1046/j.1365-294X.2003.01754.xArticlePubMedCASGoogle Scholar
- Baldan E, Nigris S, Populin F et al (2014) Identification of culturable bacterial endophyte community isolated from tissues of Vitis vinifera “Glera”. Plant Biosyst 148:508–516. https://doi.org/10.1080/11263504.2014.916364ArticleGoogle Scholar
- Baltrus DA (2017) Adaptation, specialization, and coevolution within phytobiomes. Curr Opin Plant Biol 38:109–116. https://doi.org/10.1016/j.pbi.2017.04.023ArticlePubMedGoogle Scholar
- Banerjee S, Schlaeppi K, van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16:567–576. https://doi.org/10.1038/s41579-018-0024-1ArticlePubMedCASGoogle Scholar
- Barot S, Allard V, Cantarel A et al (2017) Designing mixtures of varieties for multifunctional agriculture with the help of ecology. A review. Agron Sustain Dev 37:13. https://doi.org/10.1007/s13593-017-0418-xArticleGoogle Scholar
- Barret M, Morrissey JP, O’Gara F (2011) Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biol Fertil Soils 47:729–743. https://doi.org/10.1007/s00374-011-0605-xArticleCASGoogle Scholar
- Bartram AK, Jiang X, Lynch MDJ et al (2014) Exploring links between pH and bacterial community composition in soils from the Craibstone Experimental Farm. FEMS Microbiol Ecol 87:403–415. https://doi.org/10.1111/1574-6941.12231ArticlePubMedCASGoogle Scholar
- Barzanti R, Ozino F, Bazzicalupo M et al (2007) Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb Ecol 53:306–316. https://doi.org/10.1007/s00248-006-9164-3ArticlePubMedCASGoogle Scholar
- Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013). Plant Soil 378:1–33. https://doi.org/10.1007/s11104-013-1956-xArticleCASGoogle Scholar
- Bashan Y, Kloepper JW, de-Bashan LE, Nannipieri P (2016) A need for disclosure of the identity of microorganisms, constituents, and application methods when reporting tests with microbe-based or pesticide-based products. Biol Fertil Soils 52:283–284. https://doi.org/10.1007/s00374-016-1091-yArticleGoogle Scholar
- Becker A, Bergès H, Krol E et al (2004) Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. Mol Plant-Microbe Interact 17:292–303. https://doi.org/10.1094/MPMI.2004.17.3.292ArticlePubMedCASGoogle Scholar
- Beckers B, Op De Beeck M, Thijs S et al (2016) Performance of 16s rDNA primer pairs in the study of rhizosphere and endosphere bacterial microbiomes in metabarcoding studies. Front Microbiol 7:650. https://doi.org/10.3389/fmicb.2016.00650ArticlePubMedPubMed CentralGoogle Scholar
- Beijerinck M (1888) Die bacterien der papilionaceenknöllchen. Bot Zeitung 46:725–735 Google Scholar
- Belimov AA, Kojemiakov AP, Chuvarliyeva CV (1995) Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria. Plant Soil 173:29–37. https://doi.org/10.1007/BF00155515ArticleCASGoogle Scholar
- Bender SF, Wagg C, van der Heijden MGA (2016) An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol 31:440–452. https://doi.org/10.1016/j.tree.2016.02.016ArticlePubMedGoogle Scholar
- Benson DR, Dawson JO (2007) Recent advances in the biogeography and genecology of symbiotic Frankia and its host plants. Physiol Plant 130:318–330. https://doi.org/10.1111/j.1399-3054.2007.00934.xArticleCASGoogle Scholar
- Berg G, Raaijmakers JM (2018) Saving seed microbiomes. ISME J 12:1167–1170. https://doi.org/10.1038/s41396-017-0028-2ArticlePubMedPubMed CentralCASGoogle Scholar
- Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13. https://doi.org/10.1111/j.1574-6941.2009.00654.xArticlePubMedCASGoogle Scholar
- Berger B, Brock AK, Ruppel S (2013) Nitrogen supply influences plant growth and transcriptional responses induced by Enterobacter radicincitans in Solanum lycopersicum. Plant Soil 370:641–652. https://doi.org/10.1007/s11104-013-1633-0ArticleCASGoogle Scholar
- Blain NP, Helgason BL, Germida JJ (2017) Endophytic root bacteria associated with the natural vegetation growing at the hydrocarbon-contaminated Bitumount Provincial Historic site. Can J Microbiol 63:502–515. https://doi.org/10.1139/cjm-2017-0039ArticlePubMedCASGoogle Scholar
- Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 8:e56329. https://doi.org/10.1371/journal.pone.0056329ArticlePubMedPubMed CentralCASGoogle Scholar
- Bonanomi G, Antignani V, Capodilupo M, Scala F (2010) Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol Biochem 42:136–144. https://doi.org/10.1016/J.SOILBIO.2009.10.012ArticleCASGoogle Scholar
- Bottomley WB (1911) The structure and physiological significance of the root-nodules of Myrica gale. Proc R Soc B Biol Sci 84:215–216. https://doi.org/10.1098/rspb.1911.0068ArticleGoogle Scholar
- Brader G, Compant S, Mitter B et al (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37. https://doi.org/10.1016/j.copbio.2013.09.012ArticlePubMedPubMed CentralCASGoogle Scholar
- Bressan M, Roncato M-A, Bellvert F et al (2009) Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J 3:1243–1257. https://doi.org/10.1038/ismej.2009.68ArticlePubMedCASGoogle Scholar
- Bulgarelli D, Garrido-Oter R, Münch PC et al (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:392–403. https://doi.org/10.1016/j.chom.2015.01.011ArticlePubMedPubMed CentralCASGoogle Scholar
- Bulgarelli D, Rott M, Schlaeppi K et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95. https://doi.org/10.1038/nature11336ArticlePubMedCASGoogle Scholar
- Bulgarelli D, Schlaeppi K, Spaepen S et al (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838. https://doi.org/10.1146/annurev-arplant-050312-120106ArticlePubMedCASGoogle Scholar
- Burghardt LT, Guhlin J, Chun CL et al (2017) Transcriptomic basis of genome by genome variation in a legume-rhizobia mutualism. Mol Ecol 26:6122–6135. https://doi.org/10.1111/mec.14285ArticlePubMedCASGoogle Scholar
- Busby PE, Soman C, Wagner MR et al (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15:1–14. https://doi.org/10.1371/journal.pbio.2001793ArticleCASGoogle Scholar
- Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41. https://doi.org/10.1007/s11104-014-2131-8ArticleCASGoogle Scholar
- Camilios-Neto D, Bonato P, Wassem R et al (2014) Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes. BMC Genomics 15:378. https://doi.org/10.1186/1471-2164-15-378ArticlePubMedPubMed CentralCASGoogle Scholar
- Caporaso JG, Lauber CL, Walters WA et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. https://doi.org/10.1038/ismej.2012.8ArticlePubMedPubMed CentralCASGoogle Scholar
- Carini P, Marsden PJ, Leff JW et al (2017) Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol 2:16242. https://doi.org/10.1038/nmicrobiol.2016.242ArticleCASGoogle Scholar
- Carvalhais LC, Dennis PG, Fan B et al (2013) Linking plant nutritional status to plant-microbe interactions. PLoS One 8:e68555. https://doi.org/10.1371/journal.pone.0068555ArticlePubMedPubMed CentralCASGoogle Scholar
- Carvalho TLG, Balsemao-Pires E, Saraiva RM et al (2014) Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. J Exp Bot 65:5631–5642. https://doi.org/10.1093/jxb/eru319ArticlePubMedCASGoogle Scholar
- Castañeda-Álvarez NP, Khoury CK, Achicanoy HA et al (2016) Global conservation priorities for crop wild relatives. Nat Plants 2:1–6. https://doi.org/10.1038/NPLANTS.2016.22ArticleGoogle Scholar
- Chagas FO, Pessotti RDC, Caraballo-Rodríguez AM, Pupo MT (2018) Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 47:1652–1704. https://doi.org/10.1039/c7cs00343aArticlePubMedCASGoogle Scholar
- Chandra D, Srivastava R, Gupta VV et al (2019) Evaluation of ACC deaminase producing rhizobacteria to alleviate water stress impacts in wheat (Triticum aestivum L.) plants. Can J Microbiol 17:1–17. https://doi.org/10.1139/cjm-2018-0636ArticleCASGoogle Scholar
- Chau JF, Bagtzoglou AC, Willig MR (2011) The effect of soil texture on richness and diversity of bacterial communities. Environ Forensic 12:333–341. https://doi.org/10.1080/15275922.2011.622348ArticleCASGoogle Scholar
- Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263. https://doi.org/10.1007/s002480000087ArticlePubMedCASGoogle Scholar
- Cheng Z, McConkey BJ, Glick BR (2010) Proteomic studies of plant–bacterial interactions. Soil Biol Biochem 42:1673–1684. https://doi.org/10.1016/j.soilbio.2010.05.033ArticleCASGoogle Scholar
- Chi F, Yang P, Han F et al (2010) Proteomic analysis of rice seedlings infected by Sinorhizobium meliloti 1021. Proteomics 10:1861–1874. https://doi.org/10.1002/pmic.200900694ArticlePubMedCASGoogle Scholar
- Chiarini L, Bevivino A, Tabacchioni S, Dalmastri C (1998) Inoculation of Burkholderia cepacia, Pseudomonas fluorescens and Enterobacter sp. on Sorghum bicolor: root colonization and plant growth promotion of dual strain inocula. Soil Biol Biochem 30:81–87. https://doi.org/10.1016/S0038-0717(97)00096-5ArticleCASGoogle Scholar
- Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462. https://doi.org/10.1139/B09-023ArticleCASGoogle Scholar
- Coleman-Derr D, Desgarennes D, Fonseca-Garcia C et al (2016) Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol 209:798–811. https://doi.org/10.1111/nph.13697ArticlePubMedCASGoogle Scholar
- Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. https://doi.org/10.1016/j.soilbio.2009.11.024ArticleCASGoogle Scholar
- Conn VM, Franco CM (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl Environ Microbiol 70:1787–1794. https://doi.org/10.1128/AEM.70.3.1787ArticlePubMedPubMed CentralCASGoogle Scholar
- Correa OS, Montecchia MS, Berti MF et al (2009) Bacillus amyloliquefaciens BNM122, a potential microbial biocontrol agent applied on soybean seeds, causes a minor impact on rhizosphere and soil microbial communities. Appl Soil Ecol 41:185–194. https://doi.org/10.1016/j.apsoil.2008.10.007ArticleGoogle Scholar
- Couillerot O, Ramírez-Trujillo A, Walker V et al (2013) Comparison of prominent Azospirillum strains in Azospirillum–Pseudomonas–Glomus consortia for promotion of maize growth. Appl Microbiol Biotechnol 97:4639–4649. https://doi.org/10.1007/s00253-012-4249-zArticlePubMedCASGoogle Scholar
- Crowther TW, Maynard DS, Leff JW et al (2014) Predicting the responsiveness of soil biodiversity to deforestation: a cross-biome study. Glob Chang Biol 20:2983–2994. https://doi.org/10.1111/gcb.12565ArticlePubMedGoogle Scholar
- Dalmastri C, Chiarini L, Cantale C et al (1999) Soil type and maize cultivar affect the genetic diversity of maize root–associated Burkholderia cepacia populations. Microb Ecol 38:273–284. https://doi.org/10.1007/s002489900177ArticlePubMedCASGoogle Scholar
- de Almeida Lopes KB, Carpentieri-Pipolo V, Oro TH et al (2016) Culturable endophytic bacterial communities associated with field-grown soybean. J Appl Microbiol 120:740–755. https://doi.org/10.1111/jam.13046ArticlePubMedCASGoogle Scholar
- de Freitas JR (2000) Yield and N assimilation of winter wheat (Triticum aestivum L., var. Norstar) inoculated with rhizobacteria. Pedobiologia (Jena) 44:97–104. https://doi.org/10.1078/S0031-4056(04)70031-1ArticleGoogle Scholar
- De Souza R, Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419. https://doi.org/10.1590/S1415-475738420150053ArticlePubMedPubMed CentralGoogle Scholar
- de Souza RSC, Okura VK, Armanhi JSL et al (2016) Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep 6:28774. https://doi.org/10.1038/srep28774ArticlePubMedPubMed CentralCASGoogle Scholar
- Delmotte N, Knief C, Chaffron S et al (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci 106:16428–16433. https://doi.org/10.1073/pnas.0905240106ArticlePubMedPubMed CentralGoogle Scholar
- Deng ZS, Zhao LF, Kong ZY et al (2011) Diversity of endophytic bacteria within nodules of the Sphaerophysa salsula in different regions of Loess Plateau in China. FEMS Microbiol Ecol 76:463–475. https://doi.org/10.1111/j.1574-6941.2011.01063.xArticlePubMedCASGoogle Scholar
- Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327. https://doi.org/10.1111/j.1574-6941.2010.00860.xArticlePubMedCASGoogle Scholar
- Desirò A, Faccio A, Kaech A et al (2015) Endogone, one of the oldest plant-associated fungi, host unique Mollicutes-related endobacteria. New Phytol 205:1464–1472. https://doi.org/10.1111/nph.13136ArticlePubMedCASGoogle Scholar
- Dias T, Dukes A, Antunes PM (2015) Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations. J Sci Food Agric 95:447–454. https://doi.org/10.1002/jsfa.6565ArticlePubMedCASGoogle Scholar
- Diouf D, Samba-Mbaye R, Lesueur D et al (2007) Genetic diversity of Acacia seyal Del. Rhizobial populations indigenous to Senegalese soils in relation to salinity and pH of the sampling sites. Microb Ecol 54:553–566. https://doi.org/10.1007/s00248-007-9243-0ArticlePubMedCASGoogle Scholar
- Donn S, Kirkegaard JA, Perera G et al (2015) Evolution of bacterial communities in the wheat crop rhizosphere. Environ Microbiol 17:610–621. https://doi.org/10.1111/1462-2920.12452ArticlePubMedGoogle Scholar
- Dorn-In S, Bassitta R, Schwaiger K et al (2015) Specific amplification of bacterial DNA by optimized so-called universal bacterial primers in samples rich of plant DNA. J Microbiol Methods 113:50–56. https://doi.org/10.1016/j.mimet.2015.04.001ArticlePubMedCASGoogle Scholar
- Doty SL (2017) Functional importance of the plant microbiome. In: Doty SL (ed) Functional importance of the plant microbiome: implications for agriculture, forestry and bioenergy. Springer, Cham, pp 1–111 ChapterGoogle Scholar
- Downing KJ, Thomson JA (2000) Introduction of the Serratia marcescens chiA gene into an endophytic Pseudomonas fluorescens for the biocontrol of phytopathogenic fungi. Can J Microbiol 46:363–369. https://doi.org/10.1139/w99-147ArticlePubMedCASGoogle Scholar
- Dunfield K, Germida J (2004) Impact of genetically modified plants and soil-plant-associated microbial communities. J Environ Qual 815:806–815 ArticleGoogle Scholar
- Edwards J, Johnson C, Santos-Medellín C et al (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci 112:E911–E920. https://doi.org/10.1073/pnas.1414592112ArticlePubMedCASPubMed CentralGoogle Scholar
- Engelhard M, Hurek T, Reinhold-Hurek B (2000) Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ Microbiol 2:131–141 ArticleCASPubMedGoogle Scholar
- Faucon M-P, Houben D, Lambers H (2017) Plant functional traits: soil and ecosystem services. Trends Plant Sci 22:385–394. https://doi.org/10.1016/j.tplants.2017.01.005ArticlePubMedCASGoogle Scholar
- Faure D, Vereecke D, Leveau JHJ (2009) Molecular communication in the rhizosphere. Plant Soil 321:279–303. https://doi.org/10.1007/s11104-008-9839-2ArticleCASGoogle Scholar
- Felici C, Vettori L, Giraldi E et al (2008) Single and co-inoculation of Bacillus subtilis and Azospirillum brasilense on Lycopersicon esculentum: effects on plant growth and rhizosphere microbial community. Appl Soil Ecol 40:260–270. https://doi.org/10.1016/J.APSOIL.2008.05.002ArticleGoogle Scholar
- Fernandez O, Theocharis A, Bordiec S et al (2012) Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Mol Plant-Microbe Interact 25:496–504. https://doi.org/10.1094/MPMI-09-11-0245ArticlePubMedCASGoogle Scholar
- Ferrando L, Fernández Scavino A (2015) Strong shift in the diazotrophic endophytic bacterial community inhabiting rice (Oryza sativa) plants after flooding. FEMS Microbiol Ecol 91:fiv104. https://doi.org/10.1093/femsec/fiv104ArticlePubMedCASGoogle Scholar
- Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15:579–590. https://doi.org/10.1038/nrmicro.2017.87ArticlePubMedCASGoogle Scholar
- Finkel OM, Castrillo G, Herrera Paredes S et al (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163. https://doi.org/10.1016/j.pbi.2017.04.018ArticlePubMedPubMed CentralGoogle Scholar
- Forchetti G, Masciarelli O, Alemano S et al (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152. https://doi.org/10.1007/s00253-007-1077-7ArticlePubMedCASGoogle Scholar
- Frank B (1885) Ueber die auf wurzelsymbiose beruhende ernahrung gewisser baume durch unterirdische pilze. Ber Dt Bot Ges 3:128–145 Google Scholar
- Fray RG (2002) Altering plant-microbe interaction through artificially manipulating bacterial quorum sensing. Ann Bot 89:245–253. https://doi.org/10.1093/aob/mcf039ArticlePubMedPubMed CentralCASGoogle Scholar
- Friesen ML, Porter SS, Stark SC et al (2011) Microbially mediated plant functional traits. Annu Rev Ecol Evol Syst 42:23–46. https://doi.org/10.1146/annurev-ecolsys-102710-145039ArticleGoogle Scholar
- Fu L, Penton CR, Ruan Y et al (2017) Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biol Biochem 104:39–48. https://doi.org/10.1016/J.SOILBIO.2016.10.008ArticleCASGoogle Scholar
- Fuentes-Ramírez LE, Caballero-Mellado J, Sepúlveda J, Martínez-Romero E (1999) Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. FEMS Microbiol Ecol 29:117–128. https://doi.org/10.1111/j.1574-6941.1999.tb00603.xArticleGoogle Scholar
- Gadhave KR, Devlin PF, Ebertz A et al (2018) Soil inoculation with Bacillus spp. modifies root endophytic bacterial diversity, evenness, and community composition in a context-specific manner. Microb Ecol 76:741–750. https://doi.org/10.1007/s00248-018-1160-xArticlePubMedPubMed CentralCASGoogle Scholar
- Gaiero JR, McCall CA, Thompson KA et al (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750. https://doi.org/10.3732/ajb.1200572ArticlePubMedGoogle Scholar
- Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant-Microbe Interact 16:827–834. https://doi.org/10.1094/MPMI.2003.16.9.827ArticlePubMedCASGoogle Scholar
- Gao Z, Zhang B, Liu H et al (2017) Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biol Control 105:27–39. https://doi.org/10.1016/J.BIOCONTROL.2016.11.007ArticleGoogle Scholar
- Gdanetz K, Trail F (2017) The wheat microbiome under four management strategies, and potential for endophytes in disease protection. Phytobiomes 1:158–168. https://doi.org/10.1094/PBIOMES-05-17-0023-RArticleGoogle Scholar
- Germaine KJ, Liu X, Cabellos GG et al (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310. https://doi.org/10.1111/j.1574-6941.2006.00121.xArticlePubMedCASGoogle Scholar
- Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7. https://doi.org/10.1016/j.femsle.2005.07.030ArticlePubMedCASGoogle Scholar
- Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39. https://doi.org/10.1016/J.MICRES.2013.09.009ArticlePubMedCASGoogle Scholar
- Gond SK, Bergen MS, Torres MS, White JF Jr (2015) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87. https://doi.org/10.1016/J.MICRES.2014.11.004ArticlePubMedCASGoogle Scholar
- González Macé O, Steinauer K, Jousset A et al (2016) Flood-induced changes in soil microbial functions as modified by plant diversity. PLoS One 11:e0166349. https://doi.org/10.1371/journal.pone.0166349ArticlePubMedPubMed CentralCASGoogle Scholar
- Gottel NR, Castro HF, Kerley M et al (2011) Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl Environ Microbiol 77:5934–5944. https://doi.org/10.1128/AEM.05255-11ArticlePubMedPubMed CentralCASGoogle Scholar
- Grönemeyer JL, Burbano CS, Hurek T, Reinhold-Hurek B (2012) Isolation and characterization of root-associated bacteria from agricultural crops in the Kavango region of Namibia. Plant Soil 356:67–82. https://doi.org/10.1007/s11104-011-0798-7ArticleCASGoogle Scholar
- Großkopf T, Soyer OS (2014) Synthetic microbial communities. Curr Opin Microbiol 18:72–77. https://doi.org/10.1016/J.MIB.2014.02.002ArticlePubMedPubMed CentralGoogle Scholar
- Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526. https://doi.org/10.1021/np058128nArticlePubMedPubMed CentralCASGoogle Scholar
- Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319. https://doi.org/10.1038/nrmicro1129ArticlePubMedCASGoogle Scholar
- Hacquard S (2016) Disentangling the factors shaping microbiota composition across the plant holobiont. New Phytol 209:454–457. https://doi.org/10.1111/nph.13760ArticlePubMedGoogle Scholar
- Hallmann J, Berg G, Schulz B (2006) Isolation procedures for endophytic microorganisms. In: Microbial root endophytes. Springer, Berlin, pp 299–319 ChapterGoogle Scholar
- Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914. https://doi.org/10.1139/m97-131ArticleCASGoogle Scholar
- Hallmann J, Rodrı́guez-Kábana R, Kloepper JW (1999) Chitin-mediated changes in bacterial communities of the soil, rhizosphere and within roots of cotton in relation to nematode control. Soil Biol Biochem 31:551–560. https://doi.org/10.1016/S0038-0717(98)00146-1ArticleCASGoogle Scholar
- Hameed A, Yeh M-W, Hsieh Y-T et al (2015) Diversity and functional characterization of bacterial endophytes dwelling in various rice (Oryza sativa L.) tissues, and their seed-borne dissemination into rhizosphere under gnotobiotic P-stress. Plant Soil 394:177–197. https://doi.org/10.1007/s11104-015-2506-5ArticleCASGoogle Scholar
- Hamilton CE, Bever JD, Labbé J et al (2016) Mitigating climate change through managing constructed-microbial communities in agriculture. Agric Ecosyst Environ 216:304–308. https://doi.org/10.1016/j.agee.2015.10.006ArticleGoogle Scholar
- Han LL, Wang ET, Han TX et al (2009) Unique community structure and biogeography of soybean rhizobia in the saline-alkaline soils of Xinjiang, China. Plant Soil 324:291–305. https://doi.org/10.1007/s11104-009-9956-6ArticleCASGoogle Scholar
- Hardoim PR, Hardoim CCP, van Overbeek LS, van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 7:e30438. https://doi.org/10.1371/journal.pone.0030438ArticlePubMedPubMed CentralCASGoogle Scholar
- Hardoim PR, van Overbeek LS, Berg G et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320. https://doi.org/10.1128/MMBR.00050-14ArticlePubMedPubMed CentralGoogle Scholar
- Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471. https://doi.org/10.1016/j.tim.2008.07.008ArticlePubMedCASGoogle Scholar
- Hartman K, van der Heijden MGA, Wittwer RA et al (2018) Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 6:1–14. https://doi.org/10.1186/s40168-017-0389-9ArticleGoogle Scholar
- Haruna E, Zin NM, Kerfahi D, Adams JM (2018) Extensive overlap of tropical rainforest bacterial endophytes between soil, plant parts, and plant species. Microb Ecol 75:88–103. https://doi.org/10.1007/s00248-017-1002-2ArticlePubMedCASGoogle Scholar
- Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot 63:3429–3444. https://doi.org/10.1093/jxb/err430ArticlePubMedCASGoogle Scholar
- Hérouart D, Baudouin E, Frendo P et al (2002) Reactive oxygen species, nitric oxide and glutathione: a key role in the establishment of the legume–Rhizobium symbiosis? Plant Physiol Biochem 40:619–624. https://doi.org/10.1016/S0981-9428(02)01415-8ArticleGoogle Scholar
- Herschkovitz Y, Lerner A, Davidov Y et al (2005) Azospirillum brasilense does not affect population structure of specific rhizobacterial communities of inoculated maize (Zea mays). Environ Microbiol 7:1847–1852. https://doi.org/10.1111/j.1462-2920.2005.00926.xArticlePubMedCASGoogle Scholar
- Hirsch P, Mauchline T (2012) Who’s who in the plant root microbiome? Nat Biotechnol 30:961–962. https://doi.org/10.1038/nbt.2387ArticlePubMedCASGoogle Scholar
- Hohmann P, Messmer MM (2017) Breeding for mycorrhizal symbiosis: focus on disease resistance. Euphytica 213:113. https://doi.org/10.1007/s10681-017-1900-xArticleCASGoogle Scholar
- Hole DG, Perkins AJ, Wilson JD et al (2005) Does organic farming benefit biodiversity? Biol Conserv 122:113–130. https://doi.org/10.1016/j.biocon.2004.07.018ArticleGoogle Scholar
- Horton MW, Bodenhausen N, Beilsmith K et al (2014) Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat Commun 5:5320. https://doi.org/10.1038/ncomms6320ArticlePubMedGoogle Scholar
- Huang P, de-Bashan L, Crocker T et al (2017) Evidence that fresh weight measurement is imprecise for reporting the effect of plant growth-promoting (rhizo)bacteria on growth promotion of crop plants. Biol Fertil Soils 53:199–208. https://doi.org/10.1007/s00374-016-1160-2ArticleCASGoogle Scholar
- Hussain I, Aleti G, Naidu R et al (2018) Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: a review. Sci Total Environ 628-629:1582–1599. https://doi.org/10.1016/j.scitotenv.2018.02.037ArticlePubMedCASGoogle Scholar
- Jacoby R, Peukert M, Succurro A et al (2017) The role of soil microorganisms in plant mineral nutrition - current knowledge and future directions. Front Plant Sci 8:1–19. https://doi.org/10.3389/fpls.2017.01617ArticleGoogle Scholar
- Janvier C, Villeneuve F, Alabouvette C et al (2007) Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol Biochem 39:1–23. https://doi.org/10.1016/j.soilbio.2006.07.001ArticleCASGoogle Scholar
- Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802. https://doi.org/10.1007/s11738-010-0604-9ArticleGoogle Scholar
- Ji X, Lu G, Gai Y et al (2008) Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS Microbiol Ecol 65:565–573. https://doi.org/10.1111/j.1574-6941.2008.00543.xArticlePubMedCASGoogle Scholar
- Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One 6:e20396. https://doi.org/10.1371/journal.pone.0020396ArticlePubMedPubMed CentralCASGoogle Scholar
- Kandel S, Joubert P, Doty S (2017) Bacterial endophyte colonization and distribution within plants. Microorganisms 5:77. https://doi.org/10.3390/microorganisms5040077ArticlePubMed CentralCASGoogle Scholar
- Karimi B, Terrat S, Dequiedt S et al (2018) Biogeography of soil bacteria and archaea across France. Sci Adv 4:eaat1808. https://doi.org/10.1126/sciadv.aat1808ArticlePubMedPubMed CentralGoogle Scholar
- Karthikeyan B, Joe MM, Islam MR, Sa T (2012) ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems. Symbiosis 56:77–86. https://doi.org/10.1007/s13199-012-0162-6ArticleCASGoogle Scholar
- Kaul S, Sharma T, Dhar MK (2016) “Omics” tools for better understanding the plant–endophyte interactions. Front Plant Sci 7:1–9. https://doi.org/10.3389/fpls.2016.00955ArticleGoogle Scholar
- Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66:35–42. https://doi.org/10.1007/s13213-015-1112-3ArticleCASGoogle Scholar
- Kim D, Hofstaedter CE, Zhao C et al (2017) Optimizing methods and dodging pitfalls in microbiome research. Microbiome 5:1–14. https://doi.org/10.1186/s40168-017-0267-5ArticleGoogle Scholar
- Klindworth A, Pruesse E, Schweer T et al (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1–e1. https://doi.org/10.1093/nar/gks808ArticlePubMedCASGoogle Scholar
- Klonowska A, Melkonian R, Miché L et al (2018) Transcriptomic profiling of Burkholderia phymatum STM815, Cupriavidus taiwanensis LMG19424 and Rhizobium mesoamericanum STM3625 in response to Mimosa pudica root exudates illuminates the molecular basis of their nodulation competitiveness and symbiotic evolutionary history. BMC Genomics 19:105. https://doi.org/10.1186/s12864-018-4487-2ArticlePubMedPubMed CentralCASGoogle Scholar
- Knief C, Delmotte N, Chaffron S et al (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390. https://doi.org/10.1038/ismej.2011.192ArticlePubMedCASGoogle Scholar
- Knief C, Ramette A, Frances L et al (2010) Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J 4:719–728. https://doi.org/10.1038/ismej.2010.9ArticlePubMedCASGoogle Scholar
- Kogel K-H, Franken P, Hückelhoven R (2006) Endophyte or parasite – what decides? Curr Opin Plant Biol 9:358–363. https://doi.org/10.1016/j.pbi.2006.05.001ArticlePubMedGoogle Scholar
- Krishnaraj PU, Pasha MA (2017) Metagenome of rhizosphere and endophytic ecosystem. In: Understanding host-microbiome interactions - an Omics approach. Springer, Singapore, pp 125–156 ChapterGoogle Scholar
- Kroll S, Agler MT, Kemen E (2017) Genomic dissection of host–microbe and microbe–microbe interactions for advanced plant breeding. Curr Opin Plant Biol 36:71–78. https://doi.org/10.1016/j.pbi.2017.01.004ArticlePubMedCASGoogle Scholar
- Kuklinsky-Sobral J, Araujo WL, Mendes R et al (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251. https://doi.org/10.1111/j.1462-2920.2004.00658.xArticlePubMedCASGoogle Scholar
- Lackner G, Partida-Martinez LP, Hertweck C (2009) Endofungal bacteria as producers of mycotoxins. Trends Microbiol 17:570–576. https://doi.org/10.1016/j.tim.2009.09.003ArticlePubMedCASGoogle Scholar
- Lagos ML, Maruyama F, Nannipieri P et al (2015) Current overview on the study of bacteria in the rhizosphere by modern molecular techniques: a mini-review. J Soil Sci Plant Nutr 15:504–523. https://doi.org/10.4067/S0718-95162015005000042ArticleCASGoogle Scholar
- Lahlali R, Peng G, Gossen BD et al (2013) Evidence that the biofungicide Serenade (Bacillus subtilis) suppresses clubroot on canola via antibiosis and induced host resistance. Phytopathology 103:245–254. https://doi.org/10.1094/PHYTO-06-12-0123-RArticlePubMedCASGoogle Scholar
- Lakshmanan V, Selvaraj G, Bais HP (2014) Functional soil microbiome: belowground solutions to an aboveground problem. Plant Physiol 166:689–700. https://doi.org/10.1104/pp.114.245811ArticlePubMedPubMed CentralCASGoogle Scholar
- Langille MGI, Zaneveld J, Caporaso JG et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821. https://doi.org/10.1038/nbt.2676ArticlePubMedPubMed CentralCASGoogle Scholar
- Lapsansky ER, Milroy AM, Andales MJ, Vivanco JM (2016) Soil memory as a potential mechanism for encouraging sustainable plant health and productivity. Curr Opin Biotechnol 38:137–142. https://doi.org/10.1016/J.COPBIO.2016.01.014ArticlePubMedCASGoogle Scholar
- Lata R, Chowdhury S, Gond SK, White JF (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66:268–276. https://doi.org/10.1111/lam.12855ArticlePubMedCASGoogle Scholar
- Le Cocq K, Gurr SJ, Hirsch PR, Mauchline TH (2017) Exploitation of endophytes for sustainable agricultural intensification. Mol Plant Pathol 18:469–473. https://doi.org/10.1111/mpp.12483ArticlePubMedGoogle Scholar
- Lebeis SL, Paredes SH, Lundberg DS et al (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–864. https://doi.org/10.1126/science.aaa8764ArticlePubMedCASGoogle Scholar
- Leff JW, Lynch RC, Kane NC, Fierer N (2017) Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus. New Phytol 214:412–423. https://doi.org/10.1111/nph.14323ArticlePubMedCASGoogle Scholar
- Leloup J, Baude M, Nunan N et al (2018) Unravelling the effects of plant species diversity and aboveground litter input on soil bacterial communities. Geoderma 317:1–7. https://doi.org/10.1016/j.geoderma.2017.12.018ArticleGoogle Scholar
- Lemanceau P, Blouin M, Muller D, Moënne-Loccoz Y (2017) Let the core microbiota be functional. Trends Plant Sci 22:583–595. https://doi.org/10.1016/j.tplants.2017.04.008ArticlePubMedCASGoogle Scholar
- Lenc L, Kwaśna H, Sadowski C, Grabowski A (2015) Microbiota in wheat roots, rhizosphere and soil in crops grown in organic and other production systems. J Phytopathol 163:245–263. https://doi.org/10.1111/jph.12313ArticleCASGoogle Scholar
- Lennon JT, Muscarella ME, Placella SA, Lehmkuhl BK (2018) How, when, and where relic DNA affects microbial diversity. MBio 9:e00637–e00618. https://doi.org/10.1128/mBio.00637-18ArticlePubMedPubMed CentralGoogle Scholar
- Lery LMS, Hemerly AS, Nogueira EM et al (2011) Quantitative proteomic analysis of the interaction between the endophytic plant-growth-promoting bacterium Gluconacetobacter diazotrophicus and sugarcane. Mol Plant-Microbe Interact 24:562–576. https://doi.org/10.1094/MPMI-08-10-0178ArticlePubMedCASGoogle Scholar
- Li D, Voigt TB, Kent AD (2016) Plant and soil effects on bacterial communities associated with Miscanthus × giganteus rhizosphere and rhizomes. GCB Bioenergy 8:183–193. https://doi.org/10.1111/gcbb.12252ArticleCASGoogle Scholar
- Li JH, Wang ET, Chen WF, Chen WX (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246. https://doi.org/10.1016/j.soilbio.2007.08.014ArticleCASGoogle Scholar
- Li L, Sinkko H, Montonen L et al (2012) Biogeography of symbiotic and other endophytic bacteria isolated from medicinal Glycyrrhiza species in China. FEMS Microbiol Ecol 79:46–68. https://doi.org/10.1111/j.1574-6941.2011.01198.xArticlePubMedCASGoogle Scholar
- Liu H, Carvalhais LC, Crawford M et al (2017a) Inner plant values: diversity, colonization and benefits from endophytic bacteria. Front Microbiol 8:1–17. https://doi.org/10.3389/fmicb.2017.02552ArticleGoogle Scholar
- Liu H, Carvalhais LC, Schenk PM, Dennis PG (2017b) Effects of jasmonic acid signalling on the wheat microbiome differ between body sites. Sci Rep 7:41766. https://doi.org/10.1038/srep41766ArticlePubMedPubMed CentralCASGoogle Scholar
- Long HH, Sonntag DG, Schmidt DD, Baldwin IT (2010) The structure of the culturable root bacterial endophyte community of Nicotiana attenuata is organized by soil composition and host plant ethylene production and perception. New Phytol 185:554–567. https://doi.org/10.1111/j.1469-8137.2009.03079.xArticlePubMedCASGoogle Scholar
- Loper JE, Hassan KA, Mavrodi DV et al (2012) Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8:e1002784. https://doi.org/10.1371/journal.pgen.1002784ArticlePubMedPubMed CentralCASGoogle Scholar
- Lori M, Symnaczik S, Mäder P et al (2017) Organic farming enhances soil microbial abundance and activity—a meta-analysis and meta-regression. PLoS One 12:e0180442. https://doi.org/10.1371/journal.pone.0180442ArticlePubMedPubMed CentralCASGoogle Scholar
- Ludwig-Müller J (2015) Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett 37:1325–1334. https://doi.org/10.1007/s10529-015-1814-4ArticlePubMedCASGoogle Scholar
- Lundberg DS, Lebeis SL, Paredes SH et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90. https://doi.org/10.1038/nature11237ArticlePubMedPubMed CentralCASGoogle Scholar
- Lupwayi NZ, Clayton GW, Hanson KG et al (2004) Endophytic rhizobia in barley, wheat and canola roots. Can J Plant Sci 84:37–45. https://doi.org/10.4141/P03-087ArticleGoogle Scholar
- Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258. https://doi.org/10.1016/j.biotechadv.2010.12.001ArticlePubMedCASGoogle Scholar
- Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748. https://doi.org/10.1126/science.1143082ArticlePubMedCASGoogle Scholar
- Mahmood A, Turgay OC, Farooq M, Hayat R (2016) Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol Ecol 92:fiw112. https://doi.org/10.1093/femsec/fiw112ArticlePubMedCASGoogle Scholar
- Manici LM, Kelderer M, Caputo F et al (2015) Impact of cover crop in pre-plant of apple orchards: relationship between crop health, root inhabiting fungi and rhizospheric bacteria. Can J Plant Sci 95:947–958. https://doi.org/10.4141/cjps-2015-013ArticleGoogle Scholar
- Mano H, Tanaka F, Nakamura C et al (2007) Culturable endophytic bacterial flora of the maturing leaves and roots of rice plants (Oryza sativa) cultivated in a paddy field. Microbes Environ 22:175–185. https://doi.org/10.1264/jsme2.22.175ArticleGoogle Scholar
- Mariotte P, Mehrabi Z, Bezemer TM et al (2018) Plant–soil feedback: bridging natural and agricultural sciences. Trends Ecol Evol 33:129–142. https://doi.org/10.1016/j.tree.2017.11.005ArticlePubMedGoogle Scholar
- Maron P-A, Ranjard L, Mougel C, Lemanceau P (2007) Metaproteomics: a new approach for studying functional microbial ecology. Microb Ecol 53:486–493. https://doi.org/10.1007/s00248-006-9196-8ArticlePubMedCASGoogle Scholar
- Maropola MKA, Ramond J-B, Trindade M (2015) Impact of metagenomic DNA extraction procedures on the identifiable endophytic bacterial diversity in Sorghum bicolor (L. Moench). J Microbiol Methods 112:104–117. https://doi.org/10.1016/J.MIMET.2015.03.012ArticlePubMedCASGoogle Scholar
- Marsh JW, Humphrys MS, Myers GSA (2017) A laboratory methodology for dual RNA-sequencing of bacteria and their host cells in vitro. Front Microbiol 8:1830. https://doi.org/10.3389/fmicb.2017.01830ArticlePubMedPubMed CentralGoogle Scholar
- Martínez-Hidalgo P, Maymon M, Pule-Meulenberg F, Hirsch AM (2018) Engineering root microbiomes for healthier crops and soils using beneficial, environmentally safe bacteria. Can J Microbiol 65:91. https://doi.org/10.1139/cjm-2018-0315ArticlePubMedCASGoogle Scholar
- Mashiane RA, Ezeokoli OT, Adeleke RA, Bezuidenhout CC (2017) Metagenomic analyses of bacterial endophytes associated with the phyllosphere of a Bt maize cultivar and its isogenic parental line from South Africa. World J Microbiol Biotechnol 33:80. https://doi.org/10.1007/s11274-017-2249-yArticlePubMedCASGoogle Scholar
- McClung CR, van Berkum P, Davis RE, Sloger C (1983) Enumeration and localization of N2-fixing bacteria associated with roots of Spartina alterniflora Loisel. Appl Environ Microbiol 45:1914–1920 ArticleCASPubMedPubMed CentralGoogle Scholar
- Mendes LW, Mendes R, Raaijmakers JM, Tsai SM (2018) Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean. ISME J 12:3038. https://doi.org/10.1038/s41396-018-0234-6ArticlePubMedPubMed CentralCASGoogle Scholar
- Mendes R, Kruijt M, de Bruijn I et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100. https://doi.org/10.1126/science.1203980ArticlePubMedCASGoogle Scholar
- Mitter B, Pfaffenbichler N, Flavell R et al (2017) A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front Microbiol 8:1–10. https://doi.org/10.3389/fmicb.2017.00011ArticleGoogle Scholar
- Mitter B, Sessitsch A, Naveed M (2013) Method for producing plant seed containing endophytic micro-organisms. https://patents.google.com/patent/US20150335029
- Müller H, Berg C, Landa BB et al (2015) Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Front Microbiol 6:138. https://doi.org/10.3389/fmicb.2015.00138ArticlePubMedPubMed CentralGoogle Scholar
- Mummey D, Holben W, Six J, Stahl P (2006) Spatial stratification of soil bacterial populations in aggregates of diverse soils. Microb Ecol 51:404–411. https://doi.org/10.1007/s00248-006-9020-5ArticlePubMedGoogle Scholar
- Munkholm LJ, Heck RJ, Deen B (2013) Long-term rotation and tillage effects on soil structure and crop yield. Soil Tillage Res 127:85–91. https://doi.org/10.1016/j.still.2012.02.007ArticleGoogle Scholar
- Murphy B, Doohan F, Hodkinson T (2018) From concept to commerce: developing a successful fungal endophyte inoculant for agricultural crops. J Fungi 4:24. https://doi.org/10.3390/jof4010024ArticleGoogle Scholar
- Nascimento FX, Rossi MJ, Glick BR (2018) Ethylene and 1-aminocyclopropane-1-carboxylate (ACC) in plant–bacterial interactions. Front Plant Sci 9:114. https://doi.org/10.3389/fpls.2018.00114ArticlePubMedPubMed CentralGoogle Scholar
- Nassar AH, El-Tarabily KA, Sivasithamparam K (2005) Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biol Fertil Soils 42:97–108. https://doi.org/10.1007/s00374-005-0008-yArticleCASGoogle Scholar
- Natera SHA, Guerreiro N, Djordjevic MA (2000) Proteome analysis of differentially displayed proteins as a tool for the investigation of symbiosis. Mol Plant-Microbe Interact 13:995–1009. https://doi.org/10.1094/MPMI.2000.13.9.995ArticlePubMedCASGoogle Scholar
- Naveed M, Mitter B, Reichenauer TG et al (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39. https://doi.org/10.1016/j.envexpbot.2013.09.014ArticleCASGoogle Scholar
- Naylor D, Coleman-Derr D (2018) Drought stress and root-associated bacterial communities. Front Plant Sci 8:2223. https://doi.org/10.3389/fpls.2017.02223ArticlePubMedPubMed CentralGoogle Scholar
- Nejad P, Johnson PA (2000) Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biol Control 18:208–215. https://doi.org/10.1006/bcon.2000.0837ArticleGoogle Scholar
- Niehus R, Mitri S, Fletcher AG, Foster KR (2015) Migration and horizontal gene transfer divide microbial genomes into multiple niches. Nat Commun 6:1–9. https://doi.org/10.1038/ncomms9924ArticleCASGoogle Scholar
- Nikolic B, Schwab H, Sessitsch A (2011) Metagenomic analysis of the 1-aminocyclopropane-1-carboxylate deaminase gene (acdS) operon of an uncultured bacterial endophyte colonizing Solanum tuberosum L. Arch Microbiol 193:665–676. https://doi.org/10.1007/s00203-011-0703-zArticlePubMedCASGoogle Scholar
- Nissinen RM, Männistö MK, van Elsas JD (2012) Endophytic bacterial communities in three arctic plants from low arctic fell tundra are cold-adapted and host-plant specific. FEMS Microbiol Ecol 82:510–522. https://doi.org/10.1111/j.1574-6941.2012.01464.xArticlePubMedCASGoogle Scholar
- Nogales A, Nobre T, Valadas V et al (2016) Can functional hologenomics aid tackling current challenges in plant breeding? Brief Funct Genomics 15:288–297. https://doi.org/10.1093/bfgp/elv030ArticlePubMedGoogle Scholar
- Oh YM, Kim M, Lee-Cruz L et al (2012) Distinctive bacterial communities in the rhizoplane of four tropical tree species. Microb Ecol 64:1018–1027. https://doi.org/10.1007/s00248-012-0082-2ArticlePubMedGoogle Scholar
- Oliveira ALM, Urquiaga S, Döbereiner J, Baldani JI (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242:205–215. https://doi.org/10.1023/A:1016249704336ArticleCASGoogle Scholar
- de Oliveira ALM, de Lima Canuto E, Reis VM, Baldani JI (2003) Response of micropropagated sugarcane varieties to inoculation with endophytic diazotrophic bacteria. Braz J Microbiol 34:59–61. https://doi.org/10.1590/S1517-83822003000500020ArticleGoogle Scholar
- Oliveira MNV, Santos TMA, Vale HMM et al (2013) Endophytic microbial diversity in coffee cherries of Coffea arabica from southeastern Brazil. Can J Microbiol 59:221–230. https://doi.org/10.1139/cjm-2012-0674ArticlePubMedCASGoogle Scholar
- Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712. https://doi.org/10.4161/PSB.4.8.9047ArticlePubMedPubMed CentralGoogle Scholar
- Oteino N, Lally RD, Kiwanuka S et al (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:1–9. https://doi.org/10.3389/fmicb.2015.00745ArticleGoogle Scholar
- Owen D, Williams AP, Griffith GW, Withers PJA (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphorous acquisition. Appl Soil Ecol 86:41–54. https://doi.org/10.1016/j.apsoil.2014.09.012ArticleGoogle Scholar
- Pageni BB, Lupwayi NZ, Larney FJ et al (2013) Populations, diversity and identities of bacterial endophytes in potato (Solanum tuberosum L.) cropping systems. Can J Plant Sci 93:1125–1142. https://doi.org/10.4141/cjps2013-166ArticleCASGoogle Scholar
- Partida-Martínez LP, Heil M (2011) The microbe-free plant: fact or artifact? Front Plant Sci 2:1163–1174. https://doi.org/10.3389/fpls.2011.00100ArticleGoogle Scholar
- Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002ArticlePubMedPubMed CentralCASGoogle Scholar
- Pereira P, Ibáñez F, Rosenblueth M et al (2011) Analysis of the bacterial diversity associated with the roots of maize (Zea mays L.) through culture-dependent and culture-independent methods. ISRN Ecol 2011:1–10. https://doi.org/10.5402/2011/938546ArticleGoogle Scholar
- Pérez-Jaramillo JE, Mendes R, Raaijmakers JM (2016) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol 90:635–644. https://doi.org/10.1007/s11103-015-0337-7ArticlePubMedCASGoogle Scholar
- Pérez-Montaño F, del Cerro P, Jiménez-Guerrero I et al (2016) RNA-seq analysis of the Rhizobium tropici CIAT 899 transcriptome shows similarities in the activation patterns of symbiotic genes in the presence of apigenin and salt. BMC Genomics 17:198. https://doi.org/10.1186/s12864-016-2543-3ArticlePubMedPubMed CentralCASGoogle Scholar
- Peters R, Sturz A, Carter M, Sanderson J (2003) Developing disease-suppressive soils through crop rotation and tillage management practices. Soil Tillage Res 72:181–192. https://doi.org/10.1016/S0167-1987(03)00087-4ArticleGoogle Scholar
- Pires LF, Borges JAR, Rosa JA et al (2017) Soil structure changes induced by tillage systems. Soil Tillage Res 165:66–79. https://doi.org/10.1016/j.still.2016.07.010ArticleGoogle Scholar
- Plett JM, Martin FM (2018) Know your enemy, embrace your friend: using omics to understand how plants respond differently to pathogenic and mutualistic microorganisms. Plant J 93:729–746. https://doi.org/10.1111/tpj.13802ArticlePubMedCASGoogle Scholar
- Podolich O, Ardanov P, Zaets I et al (2015) Reviving of the endophytic bacterial community as a putative mechanism of plant resistance. Plant Soil 388:367–377. https://doi.org/10.1007/s11104-014-2235-1ArticleCASGoogle Scholar
- Poole P, Ramachandran V, Terpolilli J (2018) Rhizobia: from saprophytes to endosymbionts. Nat Rev Microbiol 16:291–303. https://doi.org/10.1038/nrmicro.2017.171ArticlePubMedCASGoogle Scholar
- Preininger C, Sauer U, Bejarano A, Berninger T (2018) Concepts and applications of foliar spray for microbial inoculants. Appl Microbiol Biotechnol 102:7265–7282. https://doi.org/10.1007/s00253-018-9173-4ArticlePubMedCASGoogle Scholar
- Prieto P, Schilirò E, Maldonado-González MM et al (2011) Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. Microb Ecol 62:435–445. https://doi.org/10.1007/s00248-011-9827-6ArticlePubMedPubMed CentralGoogle Scholar
- Prischl M, Hackl E, Pastar M et al (2012) Genetically modified Bt maize lines containing cry3Bb1, cry1A105 or cry1Ab2 do not affect the structure and functioning of root-associated endophyte communities. Appl Soil Ecol 54:39–48. https://doi.org/10.1016/J.APSOIL.2011.12.005ArticleGoogle Scholar
- Puente ME, Li CY, Bashan Y (2009) Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ Exp Bot 66:402–408. https://doi.org/10.1016/j.envexpbot.2009.04.007ArticleCASGoogle Scholar
- Qin S, Chen H-H, Zhao G-Z et al (2012) Abundant and diverse endophytic actinobacteria associated with medicinal plant Maytenus austroyunnanensis in Xishuangbanna tropical rainforest revealed by culture-dependent and culture-independent methods. Environ Microbiol Rep 4:522–531. https://doi.org/10.1111/j.1758-2229.2012.00357.xArticlePubMedGoogle Scholar
- Qin S, Zhang YJ, Yuan B et al (2014) Isolation of ACC deaminase-producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth-promoting activity under salt stress. Plant Soil 374:753–766. https://doi.org/10.1007/s11104-013-1918-3ArticleCASGoogle Scholar
- Ramesh R, Joshi AA, Ghanekar MP (2009) Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World J Microbiol Biotechnol 25:47–55. https://doi.org/10.1007/s11274-008-9859-3ArticleGoogle Scholar
- Ramírez-puebla ST, Servín-Garcidueñas LE, Jiménez-marín B et al (2013) Gut and root microbiota commonalities. Appl Environ Microbiol 79:2–9. https://doi.org/10.1128/AEM.02553-12ArticlePubMedPubMed CentralCASGoogle Scholar
- Rascovan N, Carbonetto B, Perrig D et al (2016) Integrated analysis of root microbiomes of soybean and wheat from agricultural fields. Sci Rep 6:1–12. https://doi.org/10.1038/srep28084ArticleCASGoogle Scholar
- Read DB, Bengough AG, Gregory PJ et al (2003) Plant roots release phospholipid surfactants that modify the physical and chemical properties of soil. New Phytol 157:315–326. https://doi.org/10.1046/j.1469-8137.2003.00665.xArticleCASPubMedGoogle Scholar
- Reinhold-Hurek B, Bünger W, Burbano CS et al (2015) Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol 53:403–424. https://doi.org/10.1146/annurev-phyto-082712-102342ArticlePubMedCASGoogle Scholar
- Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443. https://doi.org/10.1016/j.pbi.2011.04.004ArticlePubMedGoogle Scholar
- Reinhold B, Hurek T, Niemann EG, Fendrik I (1986) Close association of Azospirillum and diazotrophic rods with different root zones of kallar grass. Appl Environ Microbiol 52:520–526 ArticleCASPubMedPubMed CentralGoogle Scholar
- Reiter B, Bürgmann H, Burg K, Sessitsch A (2003) Endophytic nifH gene diversity in African sweet potato. Can J Microbiol 49:549–555. https://doi.org/10.1139/w03-070ArticlePubMedCASGoogle Scholar
- Remans R, Ramaekers L, Schelkens S et al (2008) Effect of Rhizobium–Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 312:25–37. https://doi.org/10.1007/s11104-008-9606-4ArticleCASGoogle Scholar
- Ren G, Zhang H, Lin X et al (2015) Response of leaf endophytic bacterial community to elevated CO2 at different growth stages of rice plant. Front Microbiol 6:855. https://doi.org/10.3389/fmicb.2015.00855ArticlePubMedPubMed CentralGoogle Scholar
- Richter-Heitmann T, Eickhorst T, Knauth S et al (2016) Evaluation of strategies to separate root-associated microbial communities: a crucial choice in rhizobiome research. Front Microbiol 7:773. https://doi.org/10.3389/fmicb.2016.00773ArticlePubMedPubMed CentralGoogle Scholar
- Rillig MC, Lehmann A, Lehmann J et al (2018) Soil biodiversity effects from field to fork. Trends Plant Sci 23:17–24. https://doi.org/10.1016/j.tplants.2017.10.003ArticlePubMedCASGoogle Scholar
- Robertson-Albertyn S, Alegria Terrazas R, Balbirnie K et al (2017) Root hair mutations displace the barley rhizosphere microbiota. Front Plant Sci 8:1094. https://doi.org/10.3389/fpls.2017.01094ArticlePubMedPubMed CentralGoogle Scholar
- Robinson RJ, Fraaije BA, Clark IM et al (2016) Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant Soil 405:381–396. https://doi.org/10.1007/s11104-015-2495-4ArticleCASGoogle Scholar
- Rodríguez-Blanco A, Sicardi M, Frioni L (2015) Plant genotype and nitrogen fertilization effects on abundance and diversity of diazotrophic bacteria associated with maize (Zea mays L.). Biol Fertil Soils 51:391–402. https://doi.org/10.1007/s00374-014-0986-8ArticleCASGoogle Scholar
- Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114. https://doi.org/10.1093/jxb/erm342ArticlePubMedCASGoogle Scholar
- Rontein D, Basset G, Hanson AD (2002) Metabolic engineering of osmoprotectant accumulation in plants. Metab Eng 4:49–56. https://doi.org/10.1006/MBEN.2001.0208ArticlePubMedCASGoogle Scholar
- Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837. https://doi.org/10.1094/MPMI-19-0827ArticlePubMedCASGoogle Scholar
- Rosenblueth M, Martínez-Romero E (2004) Rhizobium etli maize populations and their competitiveness for roof colonization. Arch Microbiol 181:337–344. https://doi.org/10.1007/s00203-004-0661-9ArticlePubMedCASGoogle Scholar
- Rousk J, Bååth E, Brookes PC et al (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351. https://doi.org/10.1038/ismej.2010.58ArticlePubMedGoogle Scholar
- Ruamps LS, Nunan N, Chenu C (2011) Microbial biogeography at the soil pore scale. Soil Biol Biochem 43:280–286. https://doi.org/10.1016/j.soilbio.2010.10.010ArticleCASGoogle Scholar
- Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556. https://doi.org/10.1104/pp.108.127613ArticlePubMedPubMed CentralCASGoogle Scholar
- Ruíz-Sánchez M, Armada E, Muñoz Y et al (2011) Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J Plant Physiol 168:1031–1037. https://doi.org/10.1016/J.JPLPH.2010.12.019ArticlePubMedGoogle Scholar
- Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383. https://doi.org/10.1007/s11104-009-0001-6ArticleCASGoogle Scholar
- Sachs JL, Mueller UG, Wilcox TP, Bull JJ (2004) The evolution of cooperation. Q Rev Biol 79:135–160. https://doi.org/10.1086/383541ArticlePubMedGoogle Scholar
- Saleem M, Law AD, Moe LA (2016) Nicotiana roots recruit rare rhizosphere taxa as major root-inhabiting microbes. Microb Ecol 71:469–472. https://doi.org/10.1007/s00248-015-0672-xArticlePubMedCASGoogle Scholar
- Saleem M, Law AD, Sahib MR et al (2018) Impact of root system architecture on rhizosphere and root microbiome. Rhizosphere 6:47–51. https://doi.org/10.1016/j.rhisph.2018.02.003ArticleGoogle Scholar
- Salter SJ, Cox MJ, Turek EM et al (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:1–12. https://doi.org/10.1186/s12915-014-0087-zArticleCASGoogle Scholar
- Sánchez-López AS, Pintelon I, Stevens V et al (2018) Seed endophyte microbiome of Crotalaria pumila unpeeled: identification of plant-beneficial methylobacteria. Int J Mol Sci 19:1–20. https://doi.org/10.3390/ijms19010291ArticleCASGoogle Scholar
- Santoyo G, Hernández-Pacheco C, Hernández-Salmerón J, Hernández-León R (2017) The role of abiotic factors modulating the plant-microbe-soil interactions: toward sustainable agriculture. A review. Spanish J Agric Res 15:e03R01. https://doi.org/10.5424/sjar/2017151-9990ArticleGoogle Scholar
- Santoyo G, Moreno-Hagelsieb G, del Carmen O-MM, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99. https://doi.org/10.1016/j.micres.2015.11.008ArticlePubMedCASGoogle Scholar
- Sarma AD, Emerich DW (2006) A comparative proteomic evaluation of culture grown vs nodule isolated Bradyrhizobium japonicum. Proteomics 6:3008–3028. https://doi.org/10.1002/pmic.200500783ArticlePubMedCASGoogle Scholar
- Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23:25–41. https://doi.org/10.1016/j.tplants.2017.09.003ArticlePubMedCASGoogle Scholar
- Schenk PM, Carvalhais LC, Kazan K (2012) Unraveling plant-microbe interactions: can multi-species transcriptomics help? Trends Biotechnol 30:177–184. https://doi.org/10.1016/j.tibtech.2011.11.002ArticlePubMedCASGoogle Scholar
- Scherling C, Ulrich K, Ewald D, Weckwerth W (2009) A metabolic signature of the beneficial interaction of the endophyte Paenibacillus sp. isolate and in vitro–grown poplar plants revealed by metabolomics. Mol Plant-Microbe Interact 22:1032–1037. https://doi.org/10.1094/MPMI-22-8-1032ArticlePubMedCASGoogle Scholar
- Schimel J, Balser T, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394 ArticlePubMedGoogle Scholar
- Schnitzer SA, Klironomos JN, HilleRisLambers J et al (2011) Soil microbes drive the classic plant diversity–productivity pattern. Ecology 92:296–303. https://doi.org/10.1890/10-0773.1ArticlePubMedGoogle Scholar
- Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686. https://doi.org/10.1017/S095375620500273XArticlePubMedGoogle Scholar
- Seghers D, Wittebolle L, Top EM et al (2004) Impact of agricultural practices on the Zea mays L. endophytic community. Appl Environ Microbiol 70:1475–1482. https://doi.org/10.1128/AEM.70.3.1475-1482.2004ArticlePubMedPubMed CentralCASGoogle Scholar
- Sessitsch A, Hardoim P, Döring J et al (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interact 25:28–36. https://doi.org/10.1094/MPMI-08-11-0204ArticlePubMedCASGoogle Scholar
- Sessitsch A, Weilharter A, Gerzabek MH et al (2001) Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl Environ Microbiol 67:4215–4224. https://doi.org/10.1128/AEM.67.9.4215-4224.2001ArticlePubMedPubMed CentralCASGoogle Scholar
- Sgroy V, Cassán F, Masciarelli O et al (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85:371–381. https://doi.org/10.1007/s00253-009-2116-3ArticlePubMedCASGoogle Scholar
- Shahzad R, Khan AL, Bilal S et al (2018) What is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Front Plant Sci 9:1–10. https://doi.org/10.3389/fpls.2018.00024ArticleGoogle Scholar
- Shi Y, Yang H, Zhang T et al (2014) Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountain. Appl Microbiol Biotechnol 98:6375–6385. https://doi.org/10.1007/s00253-014-5720-9ArticlePubMedCASGoogle Scholar
- Shidore T, Dinse T, Öhrlein J et al (2012) Transcriptomic analysis of responses to exudates reveal genes required for rhizosphere competence of the endophyte Azoarcus sp. strain BH72. Environ Microbiol 14:2775–2787. https://doi.org/10.1111/j.1462-2920.2012.02777.xArticlePubMedCASGoogle Scholar
- Sieber TN (2002) Fungal root endophytes. In: Plant roots. CRC Press, Boca Raton, pp 1369–1418 Google Scholar
- Siles JA, Cajthaml T, Minerbi S, Margesin R (2016) Effect of altitude and season on microbial activity, abundance and community structure in Alpine forest soils. FEMS Microbiol Ecol 92:fiw008. https://doi.org/10.1093/femsec/fiw008ArticlePubMedCASGoogle Scholar
- Smith CR, Blair PL, Boyd C et al (2016) Microbial community responses to soil tillage and crop rotation in a corn/soybean agroecosystem. Ecol Evol 6:8075–8084. https://doi.org/10.1002/ece3.2553ArticlePubMedPubMed CentralGoogle Scholar
- Smith SA, Tank DC, Boulanger L-AA et al (2008) Bioactive endophytes warrant intensified exploration and conservation. PLoS One 3:1–4. https://doi.org/10.1371/journal.pone.0003052ArticleCASGoogle Scholar
- Stanley CE, van der Heijden MGA (2017) Microbiome-on-a-chip: new frontiers in plant–microbiota research. Trends Microbiol 25:610–613. https://doi.org/10.1016/j.tim.2017.05.001ArticlePubMedCASGoogle Scholar
- Stearns JC, Woody OZ, McConkey BJ, Glick BR (2012) Effects of bacterial ACC deaminase on Brassica napus gene expression. Mol Plant-Microbe Interact 25:668–676. https://doi.org/10.1094/MPMI-08-11-0213ArticlePubMedCASGoogle Scholar
- Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544. https://doi.org/10.1016/S1286-4579(03)00073-XArticlePubMedCASGoogle Scholar
- Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. CRC Crit Rev Plant Sci 19:1–30. https://doi.org/10.1080/07352680091139169ArticleGoogle Scholar
- Sturz AV, Christie BR, Matheson BG (1998) Associations of bacterial endophyte populations from red clover and potato crops with potential for beneficial allelopathy. Can J Microbiol 44:162–167. https://doi.org/10.1139/w97-146ArticleCASGoogle Scholar
- Sun L, Qiu F, Zhang X et al (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424. https://doi.org/10.1007/s00248-007-9287-1ArticlePubMedCASGoogle Scholar
- Sziderics AH, Rasche F, Trognitz F et al (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53:1195–1202. https://doi.org/10.1139/W07-082ArticlePubMedCASGoogle Scholar
- Taketani RG, Lançoni MD, Kavamura VN et al (2017) Dry season constrains bacterial phylogenetic diversity in a semi-arid rhizosphere system. Microb Ecol 73:153–161. https://doi.org/10.1007/s00248-016-0835-4ArticlePubMedGoogle Scholar
- Tan Z, Hurek T, Reinhold-Hurek B (2003) Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ Microbiol 5:1009–1015. https://doi.org/10.1046/j.1462-2920.2003.00491.xArticlePubMedCASGoogle Scholar
- Tétard-Jones C, Edwards R (2016) Potential roles for microbial endophytes in herbicide tolerance in plants. Pest Manag Sci 72:203–209. https://doi.org/10.1002/ps.4147ArticlePubMedCASGoogle Scholar
- Thiebaut F, Rojas CA, Grativol C et al (2014) Genome-wide identification of microRNA and siRNA responsive to endophytic beneficial diazotrophic bacteria in maize. BMC Genomics 15:766. https://doi.org/10.1186/1471-2164-15-766ArticlePubMedPubMed CentralCASGoogle Scholar
- Thiele-Bruhn S, Bloem J, de Vries FT et al (2012) Linking soil biodiversity and agricultural soil management. Curr Opin Environ Sustain 4:523–528. https://doi.org/10.1016/j.cosust.2012.06.004ArticleGoogle Scholar
- Thijs S, De Beeck MO, Beckers B et al (2017) Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys. Front Microbiol 8:1–15. https://doi.org/10.3389/fmicb.2017.00494ArticleGoogle Scholar
- Thomas P, Sekhar AC (2016) Effects due to rhizospheric soil application of an antagonistic bacterial endophyte on native bacterial community and its survival in soil: a case study with Pseudomonas aeruginosa from banana. Front Microbiol 7:1–16. https://doi.org/10.3389/fmicb.2016.00493ArticleCASGoogle Scholar
- Tian BY, Cao Y, Zhang KQ (2015) Metagenomic insights into communities, functions of endophytes, and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots. Sci Rep 5:1–15. https://doi.org/10.1038/srep17087ArticleCASGoogle Scholar
- Toju H, Peay KG, Yamamichi M et al (2018) Core microbiomes for sustainable agroecosystems. Nat Plants 4:247–257. https://doi.org/10.1038/s41477-018-0139-4ArticlePubMedGoogle Scholar
- Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245. https://doi.org/10.1016/S1369-5274(02)00324-7ArticlePubMedCASGoogle Scholar
- Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. Biomed Res Int 2013:863240. https://doi.org/10.1155/2013/863240ArticlePubMedPubMed CentralGoogle Scholar
- Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7:40–50. https://doi.org/10.1111/1758-2229.12181ArticleGoogle Scholar
- Tuck SL, Winqvist C, Mota F et al (2014) Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J Appl Ecol 51:746–755. https://doi.org/10.1111/1365-2664.12219ArticlePubMedPubMed CentralGoogle Scholar
- Turner JT, Kelly JL, Carlson PS (1993) Endophytes: an alternative genome for crop improvement. In: International Crop Science I. Crop Science Society of America, Madison, pp 555–560 Google Scholar
- Turner TR, James EK, Poole PS et al (2013) The plant microbiome. Genome Biol 14:209. https://doi.org/10.1186/gb-2013-14-6-209ArticlePubMedPubMed CentralCASGoogle Scholar
- van Bruggen AHC, Semenov AM (2000) In search of biological indicators for soil health and disease suppression. Appl Soil Ecol 15:13–24. https://doi.org/10.1016/S0929-1393(00)00068-8ArticleGoogle Scholar
- van Dam NM, Bouwmeester HJ (2016) Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci 21:256–265. https://doi.org/10.1016/j.tplants.2016.01.008ArticlePubMedCASGoogle Scholar
- van der Heijden MGA, de Bruin S, Luckerhoff L et al (2016) A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME J 10:389–399. https://doi.org/10.1038/ismej.2015.120ArticlePubMedCASGoogle Scholar
- van der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. https://doi.org/10.1111/j.1461-0248.2007.01139.xArticlePubMedGoogle Scholar
- van der Putten WH, Bardgett RD, Bever JD et al (2013) Plant-soil feedbacks: the past, the present and future challenges. J Ecol 101:265–276. https://doi.org/10.1111/1365-2745.12054ArticleGoogle Scholar
- van Dillewijn P (2008) What gets turned on in the rhizosphere? Microb Biotechnol 1:341–342. https://doi.org/10.1111/j.1751-7915.2008.00054.xArticlePubMedPubMed CentralGoogle Scholar
- Van Overbeek L, Van Elsas JD (2008) Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol Ecol 64:283–296. https://doi.org/10.1111/j.1574-6941.2008.00469.xArticlePubMedCASGoogle Scholar
- Van Wees SC, Van der Ent S, Pieterse CM (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448. https://doi.org/10.1016/J.PBI.2008.05.005ArticlePubMedGoogle Scholar
- Vandenkoornhuyse P, Quaiser A, Duhamel M et al (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206. https://doi.org/10.1111/nph.13312ArticlePubMedGoogle Scholar
- Vasavi HS, Arun AB, Rekha PD (2016) Anti-quorum sensing activity of flavonoid-rich fraction from Centella asiatica L. against Pseudomonas aeruginosa PAO1. J Microbiol Immunol Infect 49:8–15. https://doi.org/10.1016/J.JMII.2014.03.012ArticlePubMedCASGoogle Scholar
- Vercruysse M, Fauvart M, Beullens S et al (2011) A comparative transcriptome analysis of Rhizobium etli bacteroids: specific gene expression during symbiotic nongrowth. Mol Plant-Microbe Interact 24:1553–1561. https://doi.org/10.1094/MPMI-05-11-0140ArticlePubMedCASGoogle Scholar
- Verma VC, Singh SK, Prakash S (2011) Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica a. Juss J Basic Microbiol 51:550–556. https://doi.org/10.1002/jobm.201000155ArticlePubMedCASGoogle Scholar
- Voisin A-S, Salon C, Munier-Jolain NG, Ney B (2002) Quantitative effects of soil nitrate, growth potential and phenology on symbiotic nitrogen fixation of pea (Pisum sativum L.). Plant Soil 243:31–42. https://doi.org/10.1023/A:1019966207970ArticleCASGoogle Scholar
- Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840. https://doi.org/10.1038/nrmicro2910ArticlePubMedCASGoogle Scholar
- Wagner MR, Lundberg DS, del Rio TG et al (2016) Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7:12151. https://doi.org/10.1038/ncomms12151ArticlePubMedPubMed CentralCASGoogle Scholar
- Walters WA, Jin Z, Youngblut N et al (2018) Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc Natl Acad Sci 115:7368–7373. https://doi.org/10.1073/pnas.1800918115ArticlePubMedPubMed CentralGoogle Scholar
- Wan J, Torres M, Ganapathy A et al (2005) Proteomic analysis of soybean root hairs after infection by Bradyrhizobium japonicum. Mol Plant-Microbe Interact 18:458–467. https://doi.org/10.1094/MPMI-18-0458ArticlePubMedCASGoogle Scholar
- Wang Q, Liu J, Zhu H (2018) Genetic and molecular mechanisms underlying symbiotic specificity in legume-Rhizobium interactions. Front Plant Sci 9:313. https://doi.org/10.3389/fpls.2018.00313ArticlePubMedPubMed CentralGoogle Scholar
- Wang Y, Dai CC (2011) Endophytes: a potential resource for biosynthesis, biotransformation, and biodegradation. Ann Microbiol 61:207–215. https://doi.org/10.1007/s13213-010-0120-6ArticleCASGoogle Scholar
- Wardle DA, Bardgett RD, Klironomos JN et al (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633. https://doi.org/10.1126/science.1094875ArticlePubMedCASGoogle Scholar
- Wemheuer F, Kaiser K, Karlovsky P et al (2017) Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes. Sci Rep 7:40914. https://doi.org/10.1038/srep40914ArticlePubMedPubMed CentralCASGoogle Scholar
- Wille L, Messmer MM, Studer B, Hohmann P (2018) Insights to plant-microbe interactions provide opportunities to improve resistance breeding against root diseases in grain legumes. Plant Cell Environ 42:20. https://doi.org/10.1111/pce.13214ArticlePubMedCASGoogle Scholar
- Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274. https://doi.org/10.2307/3545919ArticleGoogle Scholar
- Wissuwa M, Mazzola M, Picard C (2009) Novel approaches in plant breeding for rhizosphere-related traits. Plant Soil 321:409–430. https://doi.org/10.1007/s11104-008-9693-2ArticleCASGoogle Scholar
- Xia Y, DeBolt S, Dreyer J et al (2015) Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Front Plant Sci 6:490. https://doi.org/10.3389/fpls.2015.00490ArticlePubMedPubMed CentralGoogle Scholar
- Xu L, Naylor D, Dong Z et al (2018) Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc Natl Acad Sci 115:201717308. https://doi.org/10.1073/pnas.1717308115ArticleCASGoogle Scholar
- Yandigeri MS, Meena KK, Singh D et al (2012) Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul 68:411–420. https://doi.org/10.1007/s10725-012-9730-2ArticleCASGoogle Scholar
- Yang R, Liu P, Ye W (2017) Illumina-based analysis of endophytic bacterial diversity of tree peony (Paeonia Sect. Moutan) roots and leaves. Braz J Microbiol 48:695–705. https://doi.org/10.1016/J.BJM.2017.02.009ArticlePubMedPubMed CentralCASGoogle Scholar
- Yergeau E, Tremblay J, Joly S et al (2018) Soil contamination alters the willow root and rhizosphere metatranscriptome and the root–rhizosphere interactome. ISME J 12:869–884. https://doi.org/10.1038/s41396-017-0018-4ArticlePubMedPubMed CentralGoogle Scholar
- Zeng J, Xu T, Cao L et al (2018) The role of iron competition in the antagonistic action of the rice endophyte Streptomyces sporocinereus OsiSh-2 against the pathogen Magnaporthe oryzae. Microb Ecol 76:1021–1029. https://doi.org/10.1007/s00248-018-1189-xArticlePubMedCASGoogle Scholar
- Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771. https://doi.org/10.1039/b609472bArticlePubMedCASGoogle Scholar
- Zhang LH (2003) Quorum quenching and proactive host defense. Trends Plant Sci 8:238–244. https://doi.org/10.1016/S1360-1385(03)00063-3ArticlePubMedCASGoogle Scholar
- Zhang N, Venkateshwaran M, Boersma M et al (2012) Metabolomic profiling reveals suppression of oxylipin biosynthesis during the early stages of legume-rhizobia symbiosis. FEBS Lett 586:3150–3158. https://doi.org/10.1016/j.febslet.2012.06.046ArticlePubMedCASGoogle Scholar
- Zhang X-X, Gao J-S, Cao Y-H et al (2013) Long-term rice and green manure rotation alters the endophytic bacterial communities of the rice root. Microb Ecol 66:917–926. https://doi.org/10.1007/s00248-013-0293-1ArticlePubMedGoogle Scholar
- Zhang YZ, Wang ET, Li M et al (2011) Effects of rhizobial inoculation, cropping systems and growth stages on endophytic bacterial community of soybean roots. Plant Soil 347:147–161. https://doi.org/10.1007/s11104-011-0835-6ArticleCASGoogle Scholar
Author information
Authors and Affiliations
- Environmental Microbiology of Agro-Ecosystems, School of Environmental Sciences, Alexander Hall, Guelph, ON, Canada Micaela Tosi, Jonathan Gaiero, Nicola Linton, Tolulope Mafa-Attoye, Anibal Castillo & Kari Dunfield
- Micaela Tosi